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The availability of intense microbeam macromolecular crystal-

lography beamlines at third-generation synchrotron sources

has enabled data collection and structure solution from

microcrystals of <10 mm in size. The increased likelihood of

severe radiation damage where microcrystals or particularly

sensitive crystals are used forces crystallographers to acquire

large numbers of data sets from many crystals of the same

protein structure. The associated analysis and merging of

multi-crystal data is currently a manual and time-consuming

step. Here, a computer program, BLEND, that has been

written to assist with and automate many of the steps in this

process is described. It is demonstrated how BLEND has

successfully been used in the solution of a novel membrane

protein.
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1. Introduction

The formation of good-sized and well diffracting crystals from

large and/or insoluble proteins remains a significant challenge

in macromolecular crystallography (MX). Progress has

certainly been made in recent times (Fry et al., 1999; Caffrey,

2003; Carpenter et al., 2008), but obtaining good-quality

crystals of viruses, large molecular complexes or membrane

proteins is still challenging today.

Even in cases in which small crystals are obtained, very few

data can be collected before they receive a damaging radiation

dose. Consequently, crystallographers are often unable to

collect complete data sets from small crystals of a few

micrometres in size (Holton & Frankel, 2010).

A possible solution to these limitations is to merge data sets

from many crystals into a single data set. This practice is not

new, since for isomorphous replacement or multi-wavelength

anomalous diffraction data necessarily have to be combined

from multiple sets. This has also been a standard approach in

virus crystallography, where room-temperature data collection

from highly sensitive samples necessarily implies the merging

of data from many crystals (Wang et al., 2012). The need to

deal with multiple data sets is nowadays becoming more and

more common, mainly because of greater accessibility to

microfocus beamlines at synchrotrons around the world. A

micrometre-sized beam can be effectively used for data

collection from difficult crystals in a number of ways:

(i) a large crystal can be hit by the microbeam at different

locations during rotation, thereby continually introducing

unexposed volumes of the crystal to X-rays and reducing the

impact of radiation damage on the resulting data;

(ii) small crystals that diffract very weakly on standard

beamlines can instead produce respectable diffraction

patterns using intense microbeams; and

(iii) small-sized crystals can produce weak but sufficiently

interpretable diffraction patterns when they are exposed
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directly inside crystallization plates (Watanabe et al., 2002; Ng

et al., 2008; le Maire et al., 2011; Soliman et al., 2011; Axford et

al., 2012). The obvious advantage of this in situ technique is

that the whole time-consuming procedures behind loop fishing

and crystal cooling can be avoided, thus making the method

fast and amenable to automation.

If the number of recorded spots and their signal-to-noise

ratio are sufficiently high to allow indexing, integration does

not usually pose any significant problem for data sets yielded

by multiple crystals. However, the merging of such potentially

diverse and very partial data sets can be a challenge.

Isomorphous crystals will give rise to data whose merging

exhibits little error. In contrast, merging data from non-

isomorphous crystals yields data sets with bad statistics, and if

the degree of non-isomorphism is very high, merging may

even fail. Therefore, one approach to building a complete data

set from partial data sets from multiple crystals is to select and

group together those crystals that have a higher likelihood of

merging well together.

Besides the obvious advantage of providing complete native

data sets, data collection from multiple crystals has also shown

potential to reduce systematic errors and to strengthen the

anomalous signal in the SAD and MAD phasing techniques

(Liu et al., 2011). A remarkable tour de force in data inte-

gration and scaling from multiple microcrystals was recently

performed by Hanson et al. (2012). The method adopted by

Hanson et al. (2012) is applicable to cases in which the data are

strongly affected by radiation damage and the only way to

obtain a fairly complete data set to a reasonable resolution is

through data collection from very many crystals. The proce-

dure consists of several steps and makes use of recycling

between integrated and scaled data, with the progressive

inclusion of individual observations, based on the value of

the corresponding merging statistics. Owing to the need for

frequent human intervention to judge the removal or accep-

tance of groups of observations, this approach is more akin to

a protocol than to an automated or semi-automated proce-

dure.

This paper describes a method to assist in the selection of

optimal groups of data sets from multiple crystals prior to

scaling and merging. Cluster analysis forms the central part of

this approach and is implemented in a computer program

called BLEND. The following sections introduce the statistical

descriptors used to characterize data sets and the clustering

method adopted, their implementation in BLEND and several

practical examples.

2. Theory and methods

BLEND carries out an analysis of multiple data sets at the

pre-scaling stage, working exclusively with integrated but

unscaled and unmerged intensities. The main objective of the

procedure is to partition multiple data sets into homogeneous

groups whose merging statistics have a tendency to show

optimal values. A visual rendering of the procedure is depicted

in Fig. 1, where partitioning and selection are explained using

a simulated example with 11 data sets. Multivariate statistics

offers several techniques to accomplish such partitioning.

Cluster analysis is among the most frequently used, especially

at an exploratory stage where not much is known about the

probability distribution underlying the objects being investi-

gated. The scenario faced by the researcher merging multiple

integrated data sets is very much the typical scenario found in

exploratory data analysis, where groups are contemplated in

an otherwise unshaped set. A good and thorough introduction

to cluster analysis is given by Everitt et al. (2011).

2.1. Main elements of the clustering procedure

In our procedure for cluster analysis, each wedge (a

contiguous series of diffraction images) of data is treated as a

geometric point in multidimensional space. Points which are

in close proximity are deemed to belong to the same group.

Grouping is performed in a hierarchical way, in which small

nuclei of close points are progressively enlarged to include

more and more elements until the whole set of data wedges is

engulfed in a final all-inclusive cluster. The procedure and the

main concepts are now introduced.

2.1.1. Statistical description of data sets and clusters.
Individual data objects are characterized through statistical

descriptors. These are numerical quantities associated with

selected features of each object, whose aim is to describe

quantitatively specific parts of data variability. If m statistical

descriptors are associated with each object, then all data will

be represented as points in an m-dimensional orthonormal

space. Distances between all pairs of points in m-dimensional

space are computed and the two closest objects are merged to

form the first cluster. Although several definitions of distance

are possible in cluster analysis, Cartesian distance, as adopted

here, is appropriate and most common when the underlying

statistical descriptors show continuous variability across real

numbers.

2.1.2. Cluster-linkage method. After the formation of the

first cluster of two elements, the next two closest points are

merged to form the second cluster. In measuring all distances

during this second pass one includes the possibility of

measuring the distance between an individual point and a

cluster. In BLEND the proximity of a point to a cluster (or

between two clusters) is defined as the distance between the

point and the cluster centroid(s).

The annexation of points or clusters to form larger clusters

is known as the linkage method. None of the existing linkage

methods are known to perform universally well and the

appropriate method is selected according to the specific

application. In the context of obtaining good merged data sets

from multiple data wedges it is desirable to form groups with

features that are not too dissimilar among elements within a

cluster. For this reason it is advisable to use linkage methods

that use centroids. Among these methods, algorithms to

implement centroid and Ward linkage are very popular and

are readily available. In the centroid linkage the proximity

between two clusters is defined as the distance between the

centroids of each cluster. In the Ward linkage the proximity is

given by the increase in distance variance obtained when the
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Figure 1
Main steps involved in the type of cluster analysis used in this paper. (a) 11 data sets are characterized with 22 numerical values taken by two statistical
descriptors. (b) These data sets can be represented in a two-dimensional space (a plane) as there are only two descriptors. (c) Hierarchical cluster analysis
carried out using Ward linkage gives rise to this dendrogram. Data sets and clusters merge into progressively larger groups as the cluster height
considered is increased. (d) Specific clusters corresponding to merging nodes can be isolated using one or two height levels. Only data sets 1–7 are
selected in this example because only one merging node is included between levels Lt and Lb.

two separate clusters are joined into a single cluster (see, for

instance, p. 77 of Everitt et al., 2011). Both types of linkage

method tend to produce compact clusters, but the centroid

method is subject to the undesirable possibility of inversion.

This means that two clusters merging at a given step can

happen to be more similar than clusters that merged in a

previous step (see, for instance, Tan et al., 2006). In the

framework that we have developed, in which data sets merge

in order of decreasing proximities, this is an unwanted feature.

For this reason, and on the basis of empirical tests, we have

decided to work with the Ward linkage.

2.1.3. Dendrograms. The overall picture of hierarchical

clustering can be effectively illustrated by the dendrogram, a

kind of inverted tree whose leaves symbolize individual data

sets and whose branches progressively merge into each other

and eventually into an all-encompassing trunk. A numeric

vertical scale, or cluster height, is shown at the side of the tree

to give a quantitative measure of the distances at which

smaller branches merge into larger branches. Through the

selection of one or two values on this vertical scale, a certain

number of clusters can be highlighted. In Fig. 1 the whole

process is illustrated with a simulated example involving 11

data sets and two statistical descriptors. A review of hier-

archical clustering is given by Jain et al. (1999).

2.2. Statistical descriptors

The effectiveness of cluster analysis relies to a great extent

on how well the statistical descriptors chosen for data char-

acterization are able to capture their essential features.

Differences in the numerical values of such quantities should

correlate to physical differences among the associated data



sets and structures. It is not clear how to select descriptors

when dealing with data immediately after integration, as these

have not yet been scaled to produce structure factors.

Furthermore, issues concerning indexing and choice of the

correct space group are still present at the pre-scaling stage.

If integrated intensities are selected to build descriptors, then

their averages in resolution shells, rather than individual

values, will have to be used. Other quantities available after

data integration are unit-cell parameters and mosaicity. The

last can be a measure of crystal packing, but it is very often

plagued by correlations with other experimental quantities

during post-refinement. Unit-cell parameters can also be

affected by such correlations, but to a lesser extent. Indeed,

we have found mosaicity not to be an effective and reliable

descriptor, and have not used it. On the other hand, unit-cell

parameters have shown a remarkable ability to signal simila-

rities and differences among data sets. For this reason, unit-

cell parameters are currently the only descriptors used in

BLEND.

If no significant variation in unit-cell parameters occurs

across multiple data sets, then it can be expected that each

parameter will be distributed around a single average. When

different crystals (or different data sets from one crystal)

exhibit non-isomorphism, the population of unit cells can

break up into groups with unit-cell parameters distributed

around two or more averages.

This can be induced by a change in molecular packing, by a

genuine variation in parts of one or more chains composing

the structure, by an alteration in the amount of bulk solvent or

by a combination of these factors. Indeed, changes in unit-cell

parameters caused by structural variations were observed

during the first crystallographic studies of macromolecules

(Perutz, 1946), as the isomorphous replacement method was

then the only available technique to solve protein structures.

More recently, dehydration techniques have enabled

researchers to explore crystal packing and structural change in

a systematic way (Pickford et al., 1993; Esnouf et al., 1998;

Bowler et al., 2006; Russi et al., 2011).

It is important to stress that in order to be effective in the

determination of clusters of data sets, unit-cell parameters

have to be filtered through principal component analysis and

statistical standardization (where data are rescaled so as to

have a mean equal to 0 and a standard deviation equal to 1)

prior to cluster analysis. This has the beneficial effect of

removing undesired correlations among descriptors and of

placing all of them on the same numerical scale.

The kind of standardization just described allows data to be

prepared for cluster analysis in an appropriate way, because all

descriptors are given equal numerical weight. However, this

operation also has the undesirable effect of removing the

ability to visually detect non-isomorphism between different

groups of data sets. The cluster height appearing in the

dendrograms presented in this work has no immediate

connection with the variation of unit-cell parameters in

absolute terms. Thus, for instance, and as will be described

later in the text (see xx3.3 and 3.4), the nine data sets of the

ultralente structure can be divided into two groups which

present a good degree of non-isomorphism, while the 11 data

sets for in situ lysozyme do not show any major non-

isomorphism. Still, both dendrograms display a clear separa-

tion into two distinct groups, and the cluster height does not

make it clear that this separation reflects isomorphism issues.

It is therefore useful to use some quantitative measure of unit-

cell parameter variation in addition to cluster analysis in order

to assess the real variation of unit cells, as this is not detectable

in the dendrogram. Among the many parameters that can

be imagined, we have found that a quantity describing a

maximum linear variation that also takes into account unit-cell

angles is best suited for the characterization. Such a quantity,

named linear cell variation (LCV), measures the maximum

linear increase or decrease of the diagonals on the three

independent cell faces; details are given in Appendix A. LCV

values for the five test cases treated in x3 are shown in Table 1.

2.3. The program structure

BLEND can be executed in two modes: analysis and

synthesis. Program execution is regulated by keywords

included in an ASCII file. Input data are unmerged reflection

files in MTZ or XDS format. The final output is a number of

merged reflection files in MTZ format.

Initially, BLEND is run in analysis mode (option -a). The

input is a list of data sets to be processed or the path to the

directory containing the data. The program checks each data

set in turn, making sure that it is properly formatted and

includes integrated data taken in a continuous sweep. Data

sets failing this check are discarded and an updated file list is

stored as a new ASCII file.

Next, it applies the unit-cell parameter filtering of x2.2 and

performs the cluster analysis (x2.1). The output of the analysis

mode is a cluster dendrogram and an associated ASCII file

providing details of the clusters. Information obtained during

execution in analysis mode is also dumped to a binary file,

ready to be read by the program when running in synthesis

mode. Users should both look at the dendrogram and read

through its ASCII counterpart to decide which clusters of data

sets are worth further investigation.

Once one or more clusters have been singled out, BLEND

is run in synthesis mode (option -s). It will suffice to provide

one or two numerical levels corresponding to cluster-height

values (see x2.1 and Figure 1). The program will accordingly
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Table 1
Linear cell variation (LCV) values for the five test cases described in x3.

This quantity, introduced in x2.2 and detailed in Appendix A, is a quantitative
measure of data-set isomorphism in a manner somewhat complementary to
that described by dendrograms. An LCV value of 0 indicates perfect
isomorphism. The larger the value of LCV, the higher the non-isomorphism
among the data sets being considered.

Test case LCV (%)

Cryo-thaumatin 1.1
Cryo-insulin 1.0
Ultralente 2.0
In situ lysozyme 0.7
MemPROT 1.4



scale and merge together all data sets at each node included

in the specific dendrogram region. Scaling and merging are

carried out using the CCP4 programs POINTLESS and

AIMLESS (Evans, 2006).

Execution in synthesis mode can be repeated with different

numerical level values as many times as required. Specific

keywords for either POINTLESS or AIMLESS can be added

in BLEND keywords files so that execution in synthesis mode

can be customized. BLEND can also be executed in combi-

nation mode (option -c) when the user wishes to combine

data sets outside an existing cluster. This mode is particularly

useful when reference data sets need to be included to stabi-

lize the scaling of many incomplete ones, a practice that is

quite often followed by protein crystallographers. Unmerged

files produced by POINTLESS containing the most likely

space group, or one selected by the user, are also stored, ready

to be used for prospective and individual scaling jobs, sepa-

rately from BLEND.

BLEND requires only minimal and simple intervention

from the user, but also permits both analysis and synthesis

modes to be tailored to specific needs should the user desire.

3. Test cases, results and discussion

Five test cases have been selected to demonstrate the use and

usefulness of BLEND.

In each test case, the resolution limits were selected to be

the same for all clusters. This was performed in a conservative

fashion so as to have hI/�(I)i � 2 for all individual data sets.

Such limits can easily be changed by the user through the

keywords file. Details of data collection for all five test cases

are included as Supplementary Material1. All data were

integrated using either XDS (Kabsch, 1993) or MOSFLM

(Leslie, 1992).

A warning should be issued for dendrogram inspection. As

explained in x2.2, cluster analysis has a tendency to create

partitions out of any group of objects, even when such parti-

tions do not naturally exist. Therefore, the splitting of

dendrograms into branches does not necessarily correspond

to major physical differences between data sets. As also

explained in x2.2, a complementary overall quantity, the LCV,

will give us a quantitative feeling of the degree of isomorphism

existing among each group of data sets. LCV values for the

five test cases explored here are included in Table 1. The case

showing the highest variability is that of ultralente insulin,

while in situ lysozyme is the case with the lowest cell varia-

bility. These two cases were selected for thorough structural

investigations of non-isomorphism (see xx3.3 and 3.4).

A few words on the traditional merging statistics used to

measure data quality also need to be included. Until recently,

these statistics were drawn from data obtained as single

complete sweeps from a single crystal. The appreciation of

specific numeric values as indicators of good data quality has

evolved during several years of steady, and often nonproble-

matic, collection from such crystals. With the recent advent of

techniques from multiple crystals and with the diffusion of

problematic data sets (from membrane proteins, viruses and

complexes) this appreciation will have to be widened to allow

the inclusion of data that would otherwise be discarded.

The determination and numeric values of merging statistics

depending on geometric factors, such as completeness or

multiplicity, is not affected by the multiple-crystal scenario.

Other statistics, however, such as Rmerge, Rmeas, Rp.i.m. etc. will

in general tend to be higher, often assuming values that would

be deemed unacceptable if the same data had been collected

from a single crystal. Furthermore, the scaling process itself

normally finds problems when dealing with multiple data sets,

even when non-isomorphism is not an issue. In our experience

the estimation of errors for scaled intensity has proved to be

particularly problematic, even in those cases where the data

sets came from the same crystal. This fact obviously has

repercussions on the determination of one of the traditional

quality indicators, hI/�(I)i. In the five test cases reported here

we have used AIMLESS for all scaling jobs. The algorithm

used in this program for the automatic determination of the

SDFAC/SDAAD parameters is not stable when applied to

multiple incomplete data sets (Evans, 2013). An effort was

made to manually adjust these parameters as best as possible

and the best efforts have been included in all tables presenting

merging statistics. While we acknowledge the importance of

the estimation of hI/�(I)i as an effective way to judge data

quality, it is also important to stress that its evaluation has had

no influence on the other results and findings presented in this

paper.

3.1. Cryocooled thaumatin: space group P41212

14 data sets were collected from 12 crystals (three data sets

were collected at different positions from a large crystal) on

beamline I02 (using an ADSC Q315r CCD detector) and

beamline I24 (using a Dectris PILATUS 6M detector) at

Diamond Light Source, UK. Crystal sizes varied from 30 � 30

to 500 � 500 mm. Angular rotation ranges varied from 45� to

360� sweeps. Rotation steps were also very different from data

set to data set (0.15� to 0.5� per image). All data sets were

truncated to include only the first 40 images for the purposes

of testing BLEND in order to avoid unnecessary lengthy runs

while testing and to mimic what might be more commonly

happening when data sets from smaller multiple crystals are

collected.

The analysis mode of BLEND on these 14 data sets

produced the dendrogram shown in Fig. 2(a).

There are 91 ways to combine two different data sets taken

from the 14 available, 364 ways to combine three different

data sets, 1001 ways to combine four different data sets and so

on. In order to quantify how well different groups of data sets

merged together, and in light of the very large number of

possible merging combinations, a random selection of 50

combinations from all groups of size 2, 3, 4 or more were

merged. Given that there are only 14 ways to form different
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combinations of 13 data sets and only one combination of 14

data sets, all of these combinations were included in the test.

It still took a few hours on a standard laptop PC to run

POINTLESS and AIMLESS of all sampled groups (there

were (11 � 50) + 14 + 1 = 565 runs of POINTLESS and

AIMLESS). The highest resolution chosen for all scaling jobs

was 1.95 Å.

The results are presented in Fig. 2(b) and show the spread

of Rmeas values for all combinations. AIMLESS was run using

default options only, resulting in 41 failed jobs, so only 524

points appear in the plot. Data overlap between sets and

completeness can be low for data sets with small group sizes

and would explain why the Rmeas spread is larger for these

cases. At the same time, however, for data sets showing a

higher degree of isomorphism the Rmeas would tend to be

lower than for combinations with a higher number of data sets.

This has been explained by Diederichs & Karplus (1997) and

Weiss (2001) as the statistical tendency of Rmeas to remain

stationary or to increase slightly when the number of

unmerged reflections is increased. A slight increase generally

indicates the addition of data with good isomorphism, while a

larger increase is normally taken to indicate the addition of

data which are in part non-isomorphous.

The best merged data sets as indicated by BLEND, corre-

sponding to the merging nodes of the dendrogram in Fig. 2(a),

are plotted in Fig. 2(c) together with the median, upper and

lower inter-quartile lines of Fig. 2(b).

In this example ten out of 13 of the BLEND data sets lie

below the lower interquartile line, illustrating how it is able to

select groups of data sets for merging that have a high like-

lihood of showing optimal statistics. (See Table 2 for a

summary of the merging statistics.) BLEND therefore

presents a very quick route to obtaining optimal combinations

of data wedges for further downstream analysis.

3.2. Cryocooled insulin: space group H3

These data sets were collected on Diamond MX beamlines

I02, I03 and I04. Data were obtained from 14 crystals as short

angular sweeps.

The dendrogram from BLEND is shown in Fig. 3(a). The

same test procedure as used for thaumatin was repeated and

Figure 2
(a) Dendrogram for cluster analysis of the 14 cryocooled thaumatin data sets introduced in x3.1. (b) Rmeas for random combinations of the 14 data sets
introduced in x3.1. Calculations for groups of two, three, four all the way up to 14 data sets are shown. The broken line runs through the medians for all
groups, while the full lines include the inter-quartile range, i.e. all dots falling below the lower line and all dots falling above the upper line represent 50%
of all values. Optimally selected groups of data sets could be considered as those having Rmeas below the lower full line; these are included among the
25% of best-performing groups. (c) The broken and full lines in this plot are a replica of those in (b). The empty circles correspond to values of Rmeas for
all merged data sets found in the dendrogram in (a). Ten out of 13 of them fall under the lower inter-quartile range line. We know that only data sets
performing among the top 25% fall in this region. Thus, the selective power provided by cluster analysis is quite evident.



the results are presented in Fig. 3(b).

The high-resolution cutoff was set to

1.92 Å. In this case only seven out of 13

groups of data sets fall in the lower

quartile; however, 11 out of 13 groups

still fall below the median line, again

illustrating that clustering using unit-cell

parameters leads to the selection of

better than average merging sets.

Numerical values for the selections

suggested by BLEND are listed in

Table 3.

3.3. Cryocooled microcrystals of
insulin ultralente: space group H3

Very small (25 � 25 � 5 mm) crystals

of ultralente insulin have been used in

the treatment of diabetes for a number

of years. Because of their small size, the

structure of ultralente insulin was only

recently solved (Wagner et al., 2009)

using one of many data sets measured

from microcrystals. Although the reso-

lution was relatively high, refinement

did not perform particularly well (see

Table 4). It was thought that a multiple

data-set approach to this problem might

yield a better refined data set if

isomorphism was conserved to a good

degree. Nine data sets collected on

beamline X06SA at the Swiss Light
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Figure 3
(a) Dendrogram for cluster analysis of the 14 cryocooled insulin data sets introduced in x3.2 and (b) the spread of Rmeas values for random combinations
of 2, 3, 4, . . . , 13, 14 data sets from the same group of data. The broken line joins the medians for all cases. Full lines join the inter-quartile range points
for all cases. The empty circles represent Rmeas for all merged data sets found in the dendrogram. Seven out of 13 of them fall under the lower inter-
quartile range line. However, 11 out of 13 fall below the median line. Although the selections suggested by BLEND do not perform as well as in the case
of cryocooled thaumatin, still they can be considered to be very good.

Table 2
Merging statistics for the optimal merging combinations suggested by BLEND for the cryocooled
thaumatin data sets.

Data sets Rmeas Rp.i.m.

Completeness
(%) Multiplicity hI/�(I)i

Lowest
resolution
(Å)

Highest
resolution
(Å)

6, 7 0.037 0.016 63.8 4.9 37.9 40.84 1.95
5, 11 0.052 0.030 77.2 2.6 17.8 40.84 1.95
6, 7, 5, 11 0.040 0.014 77.2 6.6 39.0 40.84 1.95
8, 10 0.072 0.047 72.7 1.7 13.9 37.49 1.95
2, 4 0.092 0.056 59.3 2.7 48.8 35.78 1.95
13, 14 0.091 0.059 61.1 1.7 14.4 57.28 1.95
3, 2, 4 0.089 0.043 60.1 4.0 38.4 35.78 1.95
9, 8, 10 0.097 0.051 91.1 3.1 21.5 40.90 1.95
6, 7, 5, 11, 9, 8, 10 0.115 0.038 95.9 8.1 31.3 40.86 1.95
1, 6, 7, 5, 11, 9, 8, 10 0.132 0.044 98.8 8.6 32.3 40.85 1.95
12, 3, 2, 4 0.096 0.045 78.6 3.7 25.8 49.94 1.95
13, 14, 12, 3, 2, 4 0.160 0.070 93.2 4.2 27.6 57.46 1.95
All data sets 0.165 0.047 99.9 12.4 32.2 57.64 1.95

Table 3
Merging statistics for the merging sets suggested by BLEND for the cryocooled insulin data.

Data sets Rmeas Rp.i.m.

Completeness
(%) Multiplicity hI/�(I)i

Lowest
resolution
(Å)

Highest
resolution
(Å)

13, 14 0.069 0.047 81.1 1.5 14.2 24.32 1.92
8, 11 0.105 0.063 68.9 1.8 27.3 30.19 1.92
1, 7 0.112 0.076 77.6 1.5 16.6 23.58 1.92
3, 13, 14 0.082 0.049 85.0 2.2 17.4 30.29 1.92
1, 6, 7 0.278 0.175 91.0 1.9 15.6 24.36 1.92
10, 12 0.104 0.062 61.7 2.0 9.1 30.17 1.92
1, 4, 6, 7 0.166 0.114 59.5 1.3 45.9 24.36 1.92
8, 10, 11, 12 0.109 0.054 84.8 2.9 14.6 30.18 1.92
2, 3, 13, 14 0.099 0.058 93.5 2.5 16.2 30.30 1.92
1, 4, 5, 6, 7 0.203 0.112 97.7 3.0 41.4 30.35 1.92
8, 9, 10, 11, 12 0.138 0.073 94.2 3.1 13.6 30.18 1.92
1, 2, 3, 4, 5, 6, 7, 13, 14 0.150 0.064 99.7 5.3 22.6 30.33 1.92
All data sets 0.165 0.057 99.9 8.2 25.0 30.27 1.92



Source were used. As there were only nine data sets, all 502

combinations of these were merged and scaled using

POINTLESS and SCALA for comparison to the BLEND

results. These results, together with the combinations selected

by BLEND, are shown in Fig. 4(b).

It can be seen from the dendrogram in Fig. 4(a) that the

nine data sets partition into two main groups, denoted here as

group A (data sets 1–5) and group B (data sets 6–9). In order

to evaluate whether this grouping reflects real differences

between the data sets or is simply a consequence of the clus-

tering procedure, merging statistics, Rmeas and Rp.i.m., between

pairs of data sets within and between groups A and B were

calculated and plotted in Fig. 5. Merging statistics are listed in

Table 5. It is clear that merged pairs within the groups show

significantly better statistics. In order to investigate further,

structure refinement was performed against group A (to 2.1 Å

resolution) and group B (to 2.0 Å resolution) data and the

models were compared. Using an initial model (PDB entry

2vk0; Wagner et al., 2009) rigid-body refinement was first

carried out, followed by alternating cycles of model building

with Coot (Emsley et al., 2010) and model refinement with

REFMAC (Murshudov et al., 2011). Finally, a few cycles of

TLS refinement with REFMAC were carried out to improve

the model. The same test set as used in Wagner et al. (2009)

was used for cross-validation and Rfree calculations. The

statistic for the final models, model A and model B, are shown

in Table 6. Model A refined to R and Rfree values of 18.5 and

24.8%, respectively, whereas the values for model B were 20.9

and 28.0%, respectively. Overall, the two models appear to be

similar and the refinement statistics were improved, especially

for model A, compared with the original structure. The

ultralente structure, like other forms of insulin, is a dimer

composed of a 21-residue chain (chain A) and a 30-residue

chain (chain B). Two of these dimers are contained within the

asymmetric unit, and are described as four separate chains: A,

B, C and D. The presence of zinc ions facilitates the formation

of hexamers following H3 symmetry.

Values for the r.m.s. positional difference between C� atoms

refined against group A and group B data for all atoms in the

asymmetric unit and the four chains individually vary between

0.33 and 0.48 Å (values are calculated without first super-

posing the respective molecules). These differences are

significant in comparison to the differences in unit-cell para-

meters between the two structures.

This is compatible with some obvious differences at the

secondary chain level:
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Figure 4
(a) Dendrogram for the cluster analysis of ultralente insulin (x3.3) and (b) the spread of Rmeas values for random combinations of data sets from the same
group of collected data (right). The open circles represent groups corresponding to nodes in the dendrogram. Data sets 1–5 in the dendrogram form
group A and data sets 6–9 form group B.

Table 4
Results for the ultralente insulin data set used to solve the structure,
reproduced from Wagner et al. (2009).

The top part of this table displays values from data integration and data
scaling; the bottom part relates to values after structure refinement. Values in
parentheses are for the high-resolution data range.

Beam transmission (%) 30
Wavelength (Å) 0.9786
Unit-cell parameters (Å) a = 81.03, c = 33.90
Resolution range (Å) 41.0–2.2 (2.3–2.2)
hI/�(I)i 11.8 (5.7)
Completeness (%) 98.8 (98.7)
Rmerge (%) 7.2 (20.9)
Resolution range (Å) 40.5–2.2
R/Rfree (%) 24.0/28.2
PDB code 2vk0



(i) the N-terminus of chain B can be modelled in group A,

but not in group B (see Fig. 6a),

(ii) the N-terminus of chain D can be modelled in group B,

but not in group A (see Fig. 6b),

(iii) in model A, His5 of chain D is a different rotamer to

that in model B, and

(iv) in Fig. 6 the Fo � Fc density map of group A shows (at

3�) one additional Zn ion with respect to group B.

Points (iii) and (iv) seem to be responsible to a great extent for

the non-isomorphism, because chain B is connected to chain D

of another dimer through a Zn ion only if His5 of chain D has

the proper rotamer (see Fig. 6). In this example BLEND was

able to generate a merged data set from the combination of

data from multiple crystals that resulted in an improved

structure compared with that refined from a single-crystal data

set.

3.4. In situ room-temperature lysozyme: space group P43212

Test data sets from 12 crystals sitting within crystallization

plates were collected on Diamond beamline I04-1. For all of

the tests, the known space group

P43212 was imposed using the BLEND

keywords file. Interestingly, only data

set 4 yielded a unique and correct space-

group determination in POINTLESS.

Fig. 7 shows similar results to those

obtained previously using 50 random

samples to determine the spread of

Rmeas. Merging statistics are listed in

Table 7. In this case, nine out of ten

groups fall below the median and seven

of them are very close to the lower inter-

quartile range line.

Two major branches appear in the dendrogram in Fig. 7(a),

implying the existence of two isomorphous groups. However,

cluster analysis has a natural tendency to form small and large

clusters out of any collection of objects, even when distinct

groups reflect no real macroscopic differences. This also holds

true in the dendrograms produced by BLEND. The ultimate

indicator of isomorphism across crystal components is em-

bodied by the merging statistics. A sudden increase in Rmeas

(and Rp.i.m.) values when two groups of data sets merge to form

a larger group can be an indication of non-isomorphism,

whereas small variations in Rmeas accompanied by a decrease

in Rp.i.m. normally indicate a good degree of isomorphism of

the merging groups. In this case the indication is that group A

and group B have a reasonable degree of isomorphism. In

other words, we might say that no major structural differences

can be expected in structures refined against data sets from

group A and group B. This is illustrated by Table 7, in which

group A (data sets 1, 5, 7, 9 and 11) has an Rmeas of 0.128

(Rp.i.m. = 0.048), while group B (data sets 2, 3, 4, 6, 8 and 10)

has an Rmeas of 0.119 (Rp.i.m. = 0.040). When merged, their

combined Rmeas increases only slightly to 0.149 and Rp.i.m.

remains at 0.040. It can be concluded that the two groups are

essentially isomorphous, with only very minor variations in

structure. To support this conclusion, we refined the two

structures using PDB entry 2hu1 as a starting model. The 2hu1

unit-cell parameters deposited were very close to those for

groups A and B. The starting model 2hu1 was stripped of

water molecules and counterions and a run of rigid-body

refinement was carried out using REFMAC, followed by

several cycles of positional refinement and individual B-factor

refinement alternating between REFMAC and Coot for model

building. TLS refinement was carried out in the last refine-

ment cycle against group A data only. The results are

summarized in Table 8. The two structures are essentially

identical, with an r.m.s.d. using only the C� atoms of 0.1 Å. The

most notable differences were the number of water molecules

and ions: four Cl� ions, eight Na+ ions and 64 waters for the

group A model and four Cl� ions, seven Na+ ions and 57

waters in the group B model.

3.5. Cryocooled membrane protein: space group C2

In general, membrane-protein crystals diffract poorly.

Consequently, long exposure times are required to obtain
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Table 5
Merging statistics for the clusters suggested by BLEND for the ultralente insulin test case.

Data sets Rmeas Rp.i.m.

Completeness
(%)

Multiplicity
(%) hI/�(I)i

Lowest
resolution
(Å)

Highest
resolution
(Å)

6, 8 0.129 0.069 80.6 2.8 6.4 23.46 1.83
1, 4 0.172 0.106 88.3 1.9 3.3 24.38 1.83
3, 1, 4 0.196 0.114 91.5 2.5 4.3 24.39 1.83
5, 3, 1, 4 0.194 0.104 98.5 3.0 4.4 24.40 1.83
7, 9 0.190 0.122 87.5 1.7 4.0 24.25 1.83
2, 5, 3, 1, 4 0.199 0.100 99.5 3.7 5.0 24.37 1.83
6, 8, 7, 9 0.223 0.110 98.4 3.8 5.6 24.32 1.83
All data sets 0.406 0.145 99.7 7.4 5.1 24.35 1.83

Figure 5
Rmeas versus Rp.i.m. values obtained for merging pairs of data sets from the
ultralente case described in x3.3. Full circles relate to pairs within group A
and empty circles to pairs within group B. Stars relate to pairs from
different groups. The worst merging statistics are typically seen when the
merging is between pairs from different groups.



high-resolution data and often a full data set cannot be

collected from a single position on the crystal owing to severe

radiation damage. Generally, with large crystals data are

collected at multiple positions on the crystal. Where the

crystal is smaller multiple crystals must be used to generate the

data. As might be expected for crystals with a high solvent

content, there is a problem with non-isomorphism between

different crystals and consequently many data sets are usually

collected to be able to solve the structure. For this novel

membrane protein, hereafter labelled memPROT, 22 data sets

were collected from six crystals on the MX beamlines at

Diamond Light Source. All crystals were mercury-derivatized

in an attempt to provide additional phasing information. The

data-set distribution across the six crystals is summarized in

Table 9. Only three crystals (A34, A45 and yu60) yielded

complete data sets from a single sweep at a single position on

the crystal. Crystals M1S3 and M1S14 yielded 18 partial data

sets, with rotation sweeps of 25� or 60�, while crystal y18 could
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Figure 6
(a) Insulin ultralente, where the N-terminus of chain B can be modelled for group A, but not for group B. (b) On the other hand, the N-terminus of chain
D can be modelled for group B, but not for group A. In chain D it is also possible to observe two groups of different rotamers for His5. (c, d) Fo � Fc

density contoured at 3� around one of the zinc ions for (c) data in group A and (d) data in group B. While density showing the presence of the ion is very
evident in (c), it could be concluded quite reasonably that the zinc is missing in (d). This is also supported by the different rotamer of His5 in chain D; no
bonds to a zinc ion could be coordinated by different dimers with the histidine tilted in this way.

Table 6
Final statistics for structures related to group A and group B of ultralente
insulin.

The values in parentheses are for the high-resolution data range.

Group A Group B

Resolution range (Å) 24.36–2.10 (2.21–2.10) 24.32–2.00 (2.11–2.00)
Rmerge 0.138 (0.799) 0.185 (0.584)
Rmeas 0.153 (0.888) 0.203 (0.658)
Rp.i.m. 0.065 (0.382) 0.085 (0.289)
hI/�(I)i 7.4 (2.3) 7.4 (2.8)
Multiplicity 5.1 (5.1) 5.1 (5.1)
Completeness (%) 99.9 (100.0) 99.5 (100.0)
No. of reflections 24303 28373
No. of unique reflections 4775 5551
Rwork/Rfree (%) 18.5/24.8 20.9/28.0
R.m.s.d., bonds (Å) 0.016 0.015
R.m.s.d., angles (�) 1.923 1.877
Unit-cell parameters (Å)

a 80.05 81.02
c 34.25 33.75



only provide a 75% complete data set

owing to radiation damage.

BLEND was used to analyse all 22

derivative data sets and produced the

dendrogram in Fig. 8(a). The merging

statistics for the combined data sets

from BLEND are tabulated in Table 10.

Random samplings of clusters with two,

three, four and up to 22 data sets, as for

other test cases, provide the Rmeas

benchmark values shown in Fig. 8(b)

and, as in the previous examples, most

of the BLEND merging groups show

the lowest values of Rmeas.

Selection of the best data set from

Table 10 is based on a compromise between completeness and

data quality as determined by Rmeas and Rp.i.m.. In this case

merged data sets with a completeness of >90% and an Rmeas of

<0.15, corresponding to clusters 7, 9, 10, 15 and 18, were

considered for further analysis. Of these, clusters 7 and 10

were subclusters of cluster 15 and were therefore discarded.

Clusters 9, 15 and 18 were used for phasing, model building

and refinement.

In order to assess the potential benefits of these three

BLEND-selected data sets over the existing complete crystal

data sets A34, A45 and yu60, anomalous difference Fourier

maps (Roach, 2003) were calculated using phases from the

final refined model. Peak heights for the top 20 Fourier peaks

were plotted for the six data sets (Fig. 8c). Most noticeable in

Fig. 8(c) is that the peak heights for clusters 15 and 18 are

higher than those for the single-sweep data sets A34, A45 and

yu60. Peak heights for cluster 9 are comparable to those for

data set A45, although lower than those for data set A34. The
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Table 7
Merging statistics for the clusters suggested by BLEND for the in situ lysozyme test case.

Data sets Rmeas Rp.i.m.

Completeness
(%) Multiplicity hI/�(I)i

Lowest
resolution
(Å)

Highest
resolution
(Å)

7, 11 0.092 0.052 84.1 2.6 9.4 39.38 1.86
2, 3 0.091 0.048 78.0 2.6 9.5 35.31 1.86
5, 7, 11 0.112 0.054 89.7 3.6 10.1 39.39 1.86
4, 6 0.095 0.053 75.8 2.3 9.6 35.38 1.86
8, 10 0.110 0.046 50.2 4.3 19.0 39.54 1.86
9, 5, 7, 11 0.112 0.048 92.9 4.6 11.2 39.38 1.86
2, 3, 4, 6 0.115 0.050 93.2 4.0 9.8 35.34 1.86
1, 5, 7, 9, 11 0.128 0.048 93.3 5.8 11.9 39.37 1.86
2, 3, 4, 6, 8, 10 0.119 0.040 94.5 6.3 10.7 39.52 1.86
All data sets 0.149 0.040 98.5 11.5 15.2 39.45 1.86

Figure 7
(a) Dendrogram derived for in situ lysozyme data sets and (b) the spread of Rmeas values for random combinations of the same data sets. The two clusters
indicated as group A and group B were singled out to explore the structure isomorphism (see main text).

Table 8
Final statistics for structures related to group A and group B of in situ
lysozyme.

Values in parentheses are for the high-resolution data range.

Group A Group B

Resolution range (Å) 39.37–1.86 (1.96–1.86) 39.52–1.86 (1.96–1.86)
Rmerge 0.117 (0.267) 0.111 (0.313)
Rmeas 0.128 (0.320) 0.119 (0.373)
Rp.i.m. 0.048 (0.172) 0.040 (0.197)
hI/�(I)i 10.8 (3.3) 10.9 (2.7)
Multiplicity 5.8 (2.7) 6.3 (2.7)
Completeness (%) 93.3 (82.2) 94.5 (86.7)
No. of reflections 56832 63513
No. of unique reflections 9831 10070
Rwork/Rfree (%) 16.0/21.1 15.3/20.2
R.m.s.d., bonds (Å) 0.019 0.018
R.m.s.d., angles (�) 1.882 1.881
Unit-cell parameters (Å)

a 78.73 79.05
c 38.50 38.51
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case corresponding to the anomalous map with data from all

data sets has also been added to the other curves in Fig. 8(c).

This curve is the highest, as one would expect given the level

of isomorphism and the limited resolution for this case. The

use of multiple crystals/data sets is a valid alternative to single

crystals whenever data from single crystals do not provide

sufficient completeness and/or phasing power.

Fig. 8(c) also shows results for two other data sets, M1S3

and M1S14, corresponding to the combination of partial data

sets collected from crystals M1S3 and M1S14, respectively. It

happens that these two combined data sets are not associated

with any node of the dendrogram from BLEND. Owing to the

nature of the Ward clustering algorithm, other data sets

interfered in groups belonging to either M1S3 or M1S14. This

prevented, for instance, data sets 1 and 3 joining data set 2

to produce M1S3; similarly, for M1S14, clusters 15 and 12,

forming most of M1S14, are prevented from merging into a

single cluster because of data sets 1 and 3.

Data sets M1S3 and M1S14 were investigated in this case

because they were composed of partial data sets from the

same crystals. It was logical to assume that the partial data sets

would be more isomorphous with each other than those from

separate crystals. Thus, in this test case, looking at the

favourable statistics for clusters 12 and 15 one is led to believe

that perhaps all partial data sets forming crystal M1S14 could

provide a complete and good quality data set. Merging

statistics for M1S3 and M1S14 are appended to the bottom of

Table 10. The values for M1S14 are indeed remarkably good.

Figure 8
(a>) Dendrogram for cluster analysis of the 22 cryocooled memPROT data sets introduced in x3.5. (b) Spread of Rmeas values for random combinations
of 2, 3, 4, . . . , 21, 22 data sets (x3.5). The broken line joins the medians for all cases. Full lines join the inter-quartile range points for all cases. The empty
circles represent Rmeas for all merged data sets found in the dendrogram in (a). Among all data sets with an Rmeas of <0.15 and a completeness of >90%,
only three turn out to be useful for structure solution: those corresponding to clusters 9, 15 and 18. (c) Height of peaks for the strongest 20 peaks in the
anomalous Fourier for the three single data sets A34, A45 and yu60, the three combined data sets corresponding to cluster 9, the two combined data sets
corresponding to crystals M1S3 and M1S14, and for all data sets combined together. The anomalous maps calculated from clusters 15 and 18 clearly show
higher peaks than those calculated from data set A34. The anomalous signal provided by the combined data set M1S14 (see x3.5) is even higher. The
highest signal, as one would expect, comes from the case where all data sets are merged together, because of the good degree of isomorphism and the
relatively low resolution of the data involved. The number of anomalous scatterers in the asymmetric unit (the portion of the Fourier transform shown
here) is 12.

Table 9
Data sets collected for the memPROT structure.

Multiple data sets were obtained from the first two crystals, M1S3 and M1S14,
by measuring at several different locations on the same crystal.

Crystal
name

Total No. of
data sets Serial data set Nos.

Combined data
set name

M1S3 3 1, 2, 3 M1S3
M1S14 15 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16, 17, 18
M1S14

A34 1 19 A34
A45 1 20 A45
y18 1 21 y18
yu60 1 22 yu60



The anomalous signal provided by this data set is also

exceedingly high compared with those of the other data sets

(see full green curve in Figure 8c).

Data set M1S14 was ultimately used to compute improved

phases that resulted in electron density that showed more

connectivity than that computed with other data sets. A

portion of the electron density from experimental phases

corresponding to different data sets is displayed in Fig. 9. The

electron density calculated using A34 (Fig. 9a) is visibly less

connected than the electron density corresponding to M1S14

(Fig. 9d). It is interesting to also observe better connectivity

and more details for clusters 15 and 18 (Figs. 9b and 9c,

respectively).

Most importantly, as cluster 18 is formed out of contribu-

tions from crystals M1S3 and M1S14, if data from M1S14 had

been insufficient to form a complete data set and/or to provide

any useful anomalous signal, their union with data from M1S3

would have complemented them well for phasing and model

building.

This case illustrates the significant benefits of BLEND in

providing a useful overview of numerous data sets in terms of

their relative qualities and how BLEND can be persuasive in

encouraging the combination of data from different crystals.

It does, however, also identify a current weakness in BLEND

whereby the clusters identified do not necessarily correspond

to the best possible data-set combination. It is still noteworthy

that BLEND was able to identify a cluster (cl18) comprising

data from two crystals yielding a 99.1% complete data set with

significant anomalous signal and resulting in a map with

clearly interpretable secondary-structure features.

4. Conclusions and future work

In challenging (and increasingly more common) cases in which

crystals are small, inhomogeneous and radiation-sensitive,

complete data sets must be assembled from data from multiple

crystals. A significant issue with multiple-crystal data is

management and bookkeeping. BLEND provides a con-

venient and quick way of analysing multiple data sets and

presenting an informative overview of the key characteristics

of the merged clusters. BLEND manages multiple data sets

in a way that allows users not to become overburdened with

tedious bookkeeping and to focus effort on obtaining high-

quality, complete and redundant data.

It has been shown in several examples that, on average,

clustering based on unit-cell parameters has a propensity to

form data sets with the best merging statistics without the need

to explore the very large space of data-set combinations.

High values of Rmeas or even the failure to scale certain

combinations of data sets in all test cases presented, with the

exception of ultralente insulin, cannot be ascribed exclusively

to non-isomorphism but also arises from data incompleteness.

For instance, both cryocooled thaumatin and cryocooled

insulin have an Rmeas of 0.165 when merging all data sets

together; this obviously means that they either come from

reasonably isomorphous crystals or from reasonably isomor-

phous parts of the same crystal. Still, certain clusters with a

small number of data sets display values of Rmeas that are

much higher than 0.165. This is even more the case for many

random combinations of data sets. The likely reason for this to

occur is the lack of sufficient overlap for partial data sets and,
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Table 10
Merging statistics for the selection suggested by cluster analysis.

The data sets forming these selections relate to memPROT, introduced in x3.5. The combined data sets M1S3 and M1S14 are not associated with any node in the
dendrogram of Fig. 8, but they correspond to the individual crystals M1S3 and M1S14, respectively.

Cluster Data sets Rmeas Rp.i.m.

Completeness
(%) Multiplicity hI/�(I)i CCanom

Lowest
resolution
(Å)

Highest
resolution
(Å)

1 13, 18 0.072 0.051 75.60 1.3 5.8 0.000 53.93 4.21
2 5, 6 0.098 0.069 67.70 1.5 5.2 0.000 61.73 4.21
3 7, 14 0.086 0.045 28.80 3.4 11.1 0.258 53.25 4.21
4 9, 10 0.081 0.057 66.20 1.5 6.0 0.000 61.50 4.21
5 4, 5, 6 0.101 0.070 82.80 1.8 6.5 0.720 61.73 4.21
6 12, 16 0.077 0.048 56.60 1.8 6.7 0.178 61.61 4.21
7 13, 18, 7, 14 0.084 0.047 90.70 2.2 11.3 0.273 53.92 4.21
8 1, 3 0.095 0.052 75.20 3.0 12.1 0.302 54.16 4.21
9 15, 19 0.117 0.066 98.70 2.7 7.1 �0.165 54.16 4.21
10 8, 13, 18, 7, 14 0.095 0.046 91.10 2.7 7.9 0.232 53.93 4.21
11 17, 4, 5, 6 0.104 0.062 83.10 2.4 7.7 0.141 61.74 4.21
12 12, 16, 17, 4, 5, 6 0.105 0.053 84.00 3.5 10.2 0.089 61.70 4.21
13 20, 22 0.253 0.126 99.40 4.0 9.5 �0.220 112.56 4.21
14 21, 15, 19 0.186 0.089 99.40 4.0 8.8 �0.402 66.80 4.21
15 9, 10, 8, 13, 18, 7, 14 0.094 0.047 93.90 3.7 9.4 0.167 61.56 4.21
16 11, 21, 15, 19 0.182 0.084 99.70 4.5 6.8 �0.380 66.81 4.21
17 20, 22, 9, 10, 8, 13, 18, 7, 14 0.180 0.067 99.90 7.4 8.0 0.034 112.53 4.21
18 1, 3, 12, 16, 17, 4, 5, 6 0.122 0.051 99.10 5.3 10.7 0.087 61.79 4.21
19 20, 22, 9, 10, 8, 13, 18, 7, 14, 1, 3, 12, 16, 17, 4, 5, 6 0.166 0.047 99.90 12.6 18.9 0.146 112.62 4.21
20 2, 11, 21, 15, 19 0.184 0.079 99.70 5.3 7.9 �0.275 66.83 4.21
21 All data sets 0.174 0.042 99.90 18.0 16.8 0.136 112.80 4.21

M1S3 1, 2, 3 0.099 0.053 95.50 3.2 23.2 0.261 54.28 4.21
M1S14 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 0.098 0.036 98.90 7.5 11.4 0.275 61.67 4.21



accordingly, the impossibility of determining sensible scaling

parameters for their combination. Both good completeness

and good merging statistics are important, and clustering in

BLEND achieves exactly this. It does not sacrifice merging

quality in favour of completeness, for example. BLEND

provides an option (-c) to include data sets not present in the

dendrogram. As already explained, BLEND has the ability to

automatically select groups with good merging statistics, thus

reducing the enormous and mostly unachievable task of

computing all possible data-set combinations. At the same

time, BLEND has some built-in flexibility and allows users

to decide which data sets should be combined and scaled

according to the desired protocol. Ultimately, BLEND can

only deal with the available data. It is the responsibility of

other software or the user to ensure that all reciprocal-space

regions are covered by the data.
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Figure 9
Density maps for memPROT obtained with experimental phasing in autoSHARP (Vonrhein et al., 2007). The C�-backbone trace of the final refined
model is overlaid in red. (a) A34 is the best-quality data set corresponding to a full complete sweep. (b) cl015 and (c) cl18 result from the merging of
multiple data sets collected at different positions of one and two crystals, respectively. (d) M1S14 results from the combination of all 15 data sets collected
from crystal M1S14. The increased quality for the connectivity of multiple data-set maps compared with that of the individual data set is clearly
displayed.



It would be advantageous to assess data quality on indivi-

dual data sets prior to clustering. Suppose a data set

presenting poor merging statistics joins a group with good

statistics. For the new group the statistics will be worse

because the new member of the group will have ‘polluted’ the

cluster. This insertion might potentially have prevented the

old group from directly joining a different data set or group of

data sets that would have yielded better statistics. It is there-

fore very important to be able to detect bad, or rogue, data

sets prior to the clustering process; the resulting dendrogram

would likely appear more homogeneous. At present, no

outlier rejection of this type is carried out in BLEND. This is

principally because BLEND was designed to operate on very

partial data sets that individually might not yield sensible

merging statistics. Therefore, other quality indicators must

be developed, perhaps measuring data dispersion around

averages or similar statistical indicators of data concentration.

In Figs. 4(b) and 7(b) a gap is observed in the sizes of the

clusters. No groups of size 6, 7 or 8 exist for the insulin

ultralente case, while no groups of size 7, 8, 9 or 10 exist for in

situ lysozyme. The reason for this is the nature of hierarchical

clustering. At every node new branches are formed in the

dendrogram, with each branch carrying a greater number of

objects than the branches from which it originated. This

process accelerates rapidly at the top of the tree, where large

branches emerge out of much smaller ones. Thus, it is unlikely

that clusters of specific intermediate sizes will be observed

when using hierarchical clustering. Other clustering tech-

niques will have to be tried in order to create groups of any

number of data sets. Non-hierarchical clustering techniques,

such as k-means clustering (MacQueen, 1967), have the ability

to form clusters of all sizes, from many smallest individual

objects to the single overall final cluster. Other non-

hierarchical techniques, such as fuzzy clustering, can avoid the

problem of forming clusters of well defined size by assigning

weights that quantify the degree of association of an individual

object to a given group. These clustering methods will be

incorporated into BLEND in the future.

One of the main reasons to collect small wedges of data

from multiple crystals is to avoid long crystal exposure and,

accordingly, to keep intensity bias arising from radiation

damage to a minimum. However, it is still desirable during the

analysis of multiple data sets to try and eliminate diffraction

images that appear to have been severely affected by radia-

tion. Procedures for the robust handling of radiation damage

are currently being developed.

The reduction of bias caused by radiation damage is one of

the main gains derived from using multiple data sets (Hanson

et al., 2012) and in the extreme can be used to avoid any

significant damage altogether, co-existing with other valid

methods such as damage estimation, cryocooling and long

exposure times in conjunction with fast readout methods

(Holton & Frankel, 2010; Owen et al., 2012).

An important by-product of the higher redundancy gained

by collection from multiple data sets is the potential increase

in anomalous signal and and resulting phasing power, as

demonstrated elsewhere by Liu et al. (2011) and here with the

memPROT example of x3.5. Currently, no separation of data

sets based on wavelength is included in the program.

Accordingly, no provisions to cater for anomalous phasing

preparation are built into the code. The user will have to treat

data for the same crystal at different wavelengths as different

data sets and carry out cluster analysis on all of them at the

same time. Enhancement of the anomalous signal is to be

expected for those groups of isomorphous crystals for which

data were collected at the same wavelength. BLEND’s

management of multi-wavelength and isomorphous replace-

ment data will be improved to assist users in the analysis of

such data.

Cluster analysis, and the subsequent scaling and merging

of data sets corresponding to its nodes, can be successful in

grouping together isomorphous data and separating non-

isomorphous data. This is, for instance, what emerges in the

insulin ultralente case, where group A and group B corre-

sponded to clear structural differences. On the other hand, in

the example of in situ lysozyme the two main branches did not

correspond to any major non-isomorphism but rather pointed

to minor differences. This illustrates a level of subjectivity in

drawing conclusions about whether the clusters actually reflect

significant isomorphism or not. This is clearly a user-depen-

dent choice to be made based on the level of structural detail

that the user is interested in studying. Ultimately, the most

informative way of using BLEND is to generate multiple

clusters, each corresponding to different levels of similarity or

isomorphism, and analyse each one up to the evaluation of

electron density. In this way, BLEND is a valuable addition to

any automated pipeline dealing with multiple data sets from

multiple crystals from the same project.

APPENDIX A
The linear cell variation

A unit cell is characterized by six parameters: the three side

lengths a, b and c and the three angles �, � and �. A structural

change is normally followed by changes both in side lengths

and angles. These can be described simply as changes in length

if we consider the diagonals across three independent faces of

the unit cell. If we indicate with Dab the diagonal length on the

face defined by vectors a and b, and use similar notation for

the other two diagonals, we have

Dab ¼ ½a
2 þ b2 � 2ab cosð180� �Þ�1=2

Dac ¼ ½a
2 þ c2 � 2ac cosð180� �Þ�1=2

Dbc ¼ ½b
2 þ c2 � 2bc cosð180� �Þ�1=2: ð1Þ

Now, as the linear cell variation is meant to provide the extent

of change as arising from non-isomorphism, it should measure

the largest variation across the three diagonals. Furthermore,

we would like to measure such variation in fractional rather

than absolute terms. Thus, we build three square matrices,

Mab, Mac, Mbc, the elements of which are the relative differ-

ences between diagonals,
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Mabði; jÞ ¼ jDabðiÞ �DabðjÞj=min½DabðiÞ;DabðjÞ�

Macði; jÞ ¼ jDacðiÞ �DacðjÞj=min½DacðiÞ;DacðjÞ�

Mbcði; jÞ ¼ jDbcðiÞ �DbcðjÞj=min½DbcðiÞ;DbcðjÞ� ð2Þ

where, for instance, Dab(i) and Dab(j) are the values of diag-

onal Dab for data sets i and j, respectively. The largest element

of these matrices,

LCV ¼ maxðMab;Mac;MbcÞ ð3Þ

is the linear cell variation defined in x2.2.
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